

第一章

導線之選用、連接與處理

第 4 章導線之選用、連接與處理,分有二個實習單元,針對導線做一詳細的介紹,每個實習單元又由若干相關的工作項目所構成。整個學習時間為 6 小時。 建議將學習時間分成兩次,每次為 3 小時。第一次以學完實習一單元為主,第二次以學完實習二單元為主。

學習目標

- 1. 認識導線的種類、構造與用途。
- 2. 了解導線的安全電流、測量方法及選用原則。
- 3. 了解導線壓接接頭的種類及壓接方法。
- 4.了解電纜連接相關規定及連接方法。
- 5. 了解接頭加焊的方法。
- 6. 了解絕緣的目的、絕緣的處理方法。

本章實習時數:6小時

- → 4-1 導線之選用、線徑測量與電 纜線之連接
- 4-2 導線接頭之焊接與絕緣處理

技能活動 學習摘要 學後評量

實習一

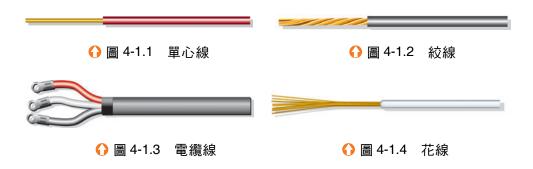
導線之選用、線徑測量與電纜線之連接

相關知識學習

電源、導線、開關及負載是構成電路的四大要件,缺一不可,但 一般人購買電器用品時,只在意用品本身的容量和價格,購買回家後 也都直接插電,沒有考慮到家裡所使用導線的耐電流量,這是很危險 的,因為大部份用電意外都是導線選用不當或任意加裝過量用電器具 而導致過熱走火的,可見對導線的認識是很重要。

1 導線分類

① 依使用材料來區分


- 1. 銅線:是目前使用最多的導線,具有導電率高、硬度夠、不易被腐蝕等優點。銅線又可分成三類:
 - (1)硬抽銅線:導電率為純銅的97%~99%,適用於屋外輸電線。
 - (2)半硬抽銅線:導電率為純銅的 98%~99.5%,適用於一般屋外 架空線路。
 - (3)軟抽銅線:容易彎曲且導電率為純銅的 99%~100%,適用於屋內線路。
- 2. 鋁線: 鋁的導電率約為銅的 61%,具有質輕耐腐蝕的特性,適用 於架空線路,或用於工業區之屋外配線。但是耐張力弱、容易變 形是最大的缺點。
- 3. 鋼心鋁線(ACSR):以鋼線為導線的中心,外圍繞以鋁線製成,可 以改善鋁線耐張力不足的缺點,適用於長距離的輸電線路。
- 4. 鎳烙線:由鎳烙加上合金製成鎳烙線,能耐高溫,適用於電熱類器具的電熱線。
- 5. 銅合金線:在銅中加入少量他種金屬製成,導電率雖下降,但抗 張強度卻大增。

- (1) 編銅線:含有 1.2%~1.4% 的編,導電率為純銅的 85%,適用 於通信線路。
- (2)矽銅線:含有 0.8%~1.5% 的矽及少量的錫,導電率為純銅的 60%,適用於長跨距之輸電線路。
- (3)黃銅線:含有30%~40%的鋅,導電率為純銅的30%,適用於 握刷器。
- (4)磷青銅線:含有10%的錫,導電率為純銅的30%。

② 依導線的構造來區分

- 1. 裸銅線:本身不加任何被覆物質的導線,適用於外線架空線、耐 熱電熱絲等。
- 2. 單心線:由單一股裸銅線外包一層絕緣皮所構成的導線就叫單心線,也叫實心線。它是以直徑來表示線徑的大小,單位為公厘 (mm),使用於屋內配線。
- 3. 絞線:由多股同線徑單心線分層重疊絞接而成,再外包一層絕緣 皮的導線稱之為絞線,也稱為撚線。它是以截面積來表示線徑的 大小,單位為平方公厘(mm²)。
- 4. 電纜線:由多條一般導線組合而成,各導線先以 PVC 作個別絕緣,再用 PVC 將全部導線包起來,以增加其機械強度及絕緣作用。
- 5. 花線(軟線):由線徑 0.18mm 到 0.32mm 等較細小的多股裸銅線絞接而成,它是使用塑膠或橡膠來做絕緣保護。

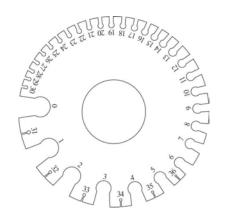
2 選用導線所需考慮的事項

- 1. 電壓降: 太大的壓降會造成供電電壓不足, 也會減低用電器具的壽命。
- 2. 耐電壓:導線耐壓不足會導致絕緣破壞進而電線走火。
- 3. 電力損失:使用導線線徑愈細,費用愈低,但是損失會增加,較耗電。
- 4.安全電流: 乃導線所能容許的最大電流,依線徑的大小不同,安全電流亦不同,在安全電流內導線可正常工作,若超過安全電流,將使導線溫度升高超過最高容許溫度而破壞絕緣,甚至釀成火災。任何導線的安全電流都會受下列三項因素的影響:(1)導線絕緣材料的最高容許溫度(2)周圍溫度(3)散熱條件。
- 5. 機械強度:選用導線必須有足夠的機械強度來抵抗拉線的張力,以 免發生斷線。
- 6. 太大導線不宜使用:由於導線愈大,交流集膚效應也愈大,所以當 用電器具電流較大時,可考慮採用多條導線並聯使用。
- 7. 導電率: 導電率愈高,相對的損失會減少 $(P_{loss} = I^2R)$,效率就愈高。
- 8. 彎曲性:導線愈易於彎曲,就具有相對的柔軟性,不易被折斷。
- 9. 耐用性:對機械及電器性能愈能持久不變,愈不易腐蝕,可使導線 壽命增加。
- 10. 重量價錢:導線愈輕則拉力相對降低,也愈易施工;價廉則可以被 普遍使用。

3 導線的識別與測量

一般導線在其外皮均記錄著規格,可直接讀取加以識別,如圖 4-1.5 為一低壓用(600V以下)5.5mm²PVC 絞線(工業配線主電路用)。

○ 圖 4-1.5 導線規格


另一種是以工具如線規、測微計或游標卡尺來測量它的線徑。

❶線 規

如圖 4-1.6 所示。由於各國線徑單位不同,所以統一以線號來標示它的大小,使用者可依線規的對照表,如表 4-1.1 來得到它的線徑。其種類可分:

- 1. 中國線規(CWG):以公厘(mm)表示 單心線直徑,而以平方公厘(mm²)表 示絞線的截面積。
- 2. 美國線規(AWG):以吋(in)表示線徑。 將線徑 0.46 吋定為線號 0000,而線

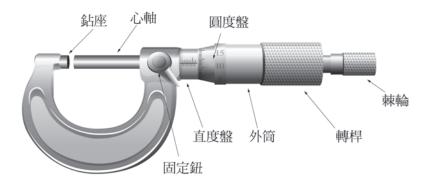
() 圖 4-1.6 圓型線規

徑 0.005 吋定為線號 36,共計 40 個線號。線號愈小,線徑愈粗;每差 6 號,直徑就大約減半;每差 3 號,截面積就大約減半,每 差 10 號,截面積就大約為原來的 1/10。

3. 英國線規(SWG): 以密爾(mil),表示單心線直徑,而以圓密爾 (CM)表示絞線的截面積。

1 mil = 1/1000 ls $1 \text{CM} = \pi/4 \text{ mil}^2$

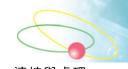
♥ 表 4-1.1 線規對照表

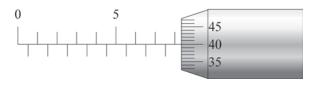

≠ 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	美 國	線規	英 國 線 規		4白 +日	美 國 線 規		英 國 線 規	
線規號碼	A.W.G		S.W.G		線規號碼	A.W.G		S.W.G	
J)) L H/mJ	吋	公厘	吋	公厘	J)/ L H/mJ	吋	公厘	吋	公厘
0000	0.4600	11.684	0.400	10.160	7	0.1443	3.665	0.176	4.470
000	0.4096	10.404	0.372	9.449	8	0.1285	3.264	0.160	4.064
00	0.3648	9.266	0.348	8.839	9	0.1144	2.906	0.144	3.658
0	0.3249	8.252	0.324	8.230	10	0.1019	2.588	0.128	3.251
1	0.2893	7.348	0.300	7.620	11	0.0907	2.304	0.116	2.946
2	0.2576	6.543	0.276	7.010	12	0.0808	2.052	0.104	2.642
3	0.2294	5.827	0.252	6.401	13	0.0720	1.829	0.092	2.337
4	0.2043	5.189	0.232	5.893	14	0.0641	1.628	0.080	2.032
5	0.1819	4.620	0.212	5.385	15	0.0571	1.450	0.072	1.829
6	0.1620	4.115	0.192	4. 877	16	0.0508	1.290	0.064	1.626

基本電學實習I

17	0.0453	1.151	0.056	1.422	32	0.0086	0.218	0.0108	0.274
18	0.0403	1.024	0.048	1.219	33	0.0071	0.180	0.0100	0.254
19	0.0359	0.912	0.040	1.016	34	0.0063	0.160	0.0092	0.234
20	0.0320	0.813	0.036	0.914	35	0.0056	0.142	0.0084	0.213
21	0.0285	0.724	0.032	0.813	36	0.0050	0.127	0.0076	0.193
22	0.0253	0.643	0.0280	0.711	37	0.0045	0.114	0.0068	0.173
23	0.0226	0.574	0.0240	0.610	38	0.0040	0.102	0.0060	0.152
24	0.0201	0.511	0.0220	0.559	39	0.0035	0.089	0.0052	0.132
25	0.0179	0.455	0.0200	0.508	40	0.0031	0.079	0.0048	0.122
26	0.0159	0.404	0.0180	0.457	41	0.0028	0.071	0.0044	0.112
27	0.0142	0.361	0.0164	0.417	42	0.0025	0.064	0.0040	0.102
28	0.0126	0.320	0.0148	0.376	43	0.0022	0.056	0.0036	0.091
29	0.0113	0.287	0.0136	0.345	44	0.00198	0.050	0.0032	0.081
30	0.0100	0.254	0.0124	0.315	45	0.00176	0.045	0.0028	0.071
31	0.0089	0.226	0.0116	0.295	46	0.00157	0.040	0.0024	0.061

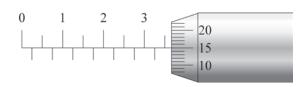
② 測微計


測微計(micrometer)又稱分厘卡,它的精密度可以達到 0.01mm 或 0.001"。圖 4-1.7 所示就是它的外觀和各部份名稱。


○ 圖 4-1.7 測微計

測微計依採用線規制度的不同可分成公制分厘卡及英制分厘卡 兩種:

1. 公制分厘卡:直度盤一格為 0.5mm。圓度盤 50 小格,每一小格 為 0.01mm,所以圓度盤轉一圈即等於直度盤一格。如圖 4-1.8 中



直度盤為 8mm,圓度盤為 $40 \times 0.01 = 0.4mm$,所以讀數為 8 + 0.4 = 8.4mm。

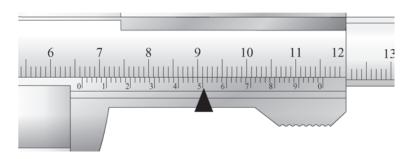
() 圖 4-1.8 公制分厘卡計算

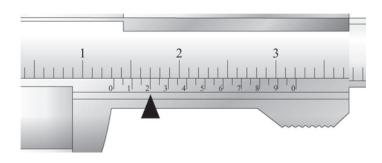
2. 英制分厘卡: 直度盤一格為 0.025"; 圓度盤 25 格,每一小格為 0.001",所以圓度盤轉一圈即等於直度盤一格。如圖 4-1.9 中,直 度盤為 0.35",圓度盤為 15×0.001=0.015",所以讀數為 0.35"+ 0.015"= 0.365"。

↔ 圖 4-1.9 英制分厘卡計算

③ 游標卡尺

游標卡尺(vernier caliper)是機械工件最常使用的測量儀器,它的精密度可以達到 0.02mm或 0.001"。如圖 4-1.10 所示就是它的外觀名稱和各部份用途。




○ 圖 4-1.10 游標卡尺

基本電學實習I

游標卡尺依精密度的不同可分成 1/50mm 精度及 1/20mm 精度兩種:

- 1. 1/50mm 精度:本尺的刻度 1 格為 1mm,游標尺 50 小格,每格 0.02mm。如圖 4-1.11 所示,其量測值為本尺 66 小格×1mm = 66mm 再加上游標尺 5 刻度×5 小格×0.02mm = 0.50mm,故總共長度為 66.50mm。
- 2. 1/20mm 精度:本尺的刻度 1 格為 1mm,游標尺 20 小格,每格 0.05mm。如圖 4-1.12 所示,其量測值為本尺 13 小格×1mm = 13mm 再加上游標尺 2 刻度×2 小格×0.05mm = 0.20mm,故總長 度為 13.20mm。

← 圖 4-1.12 1/20mm 精度計算

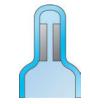
4 導線壓接接頭分類

依使用場合可分成下列幾種:

1. 螺式接頭(all plastic wire connector):如圖 4-1.13 所示,螺式接頭是由電木原料製成,內有螺紋。接合前應先將導線之絕緣剖剝後,同時

插入套管中,再旋緊螺旋套管即可。適用於較細的導線。

2. 彈簧螺式接頭(screw on wire connector):如圖 4-1.14 所示,是一種內附彈簧的螺式接頭,材質及施工法同螺式接頭。適用於單心及較粗心之電線。



↔ 圖 4-1.13 螺式接頭

↔ 圖 4-1.14 彈簧螺式接頭

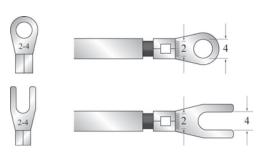
3. 閉端端子(close-end wire connector): 端子內部由 銅鍍鋅製成,外部則為尼龍料製。接合前應先 將導線之絕緣剖剝後,先互絞成螺旋狀,並插 入套管中,最後以壓接鉗壓接即可。

↔ 圖 4-1.15 閉端端子

4. 銅壓接套管(copper compression connector): 適用於導線之間的連接,它是以銅片製成 管狀或利用銅管製成,使用套管接合,需 先將導線之絕緣剖剝後,穿入套管,再以 壓接鉗壓接即完成。

() 圖 4-1.16 銅壓接套管

5. 壓接端子(solderless terminal): 壓接端子有 O 型及 Y 型兩種。



← ● ● 4-1.18 Y型壓接端子

(1)壓接端子的選用應依導線的線徑與所連接器具的固定螺絲的規格。它的規格有三項,分別為導線線徑、螺絲直徑及端子型式。如圖4-1.19 所示的 2-4 O,即為 2.0mm² 導線用的 O 型壓接端子,螺絲孔徑為 4mm。

基本電學實習I

- (2)壓接端子需使用壓接鉗壓接。
- ③壓接端子與導線的連接需符合圖 4-1.20 規定。
- (4)壓接端子以不彎曲為原則,若需彎曲則其彎曲角度不得大於 60 度。如圖 4-1.21。

() 圖 4-1.19 壓接端子規格

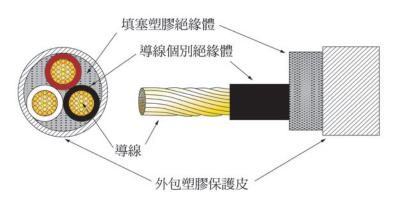
D: 0.5mm~2.5mm d: 0.5mm~1mm



○ 圖 4-1.20 壓接端子連接要點

○ 圖 4-1.21 壓接端子彎曲要點

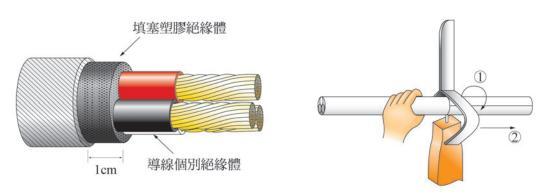
- (5)一個端子上只能連接兩條導線,若有壓接端子則應以背對背的方式來固定,如圖 4-1.22。
- (6)壓接端子壓接時應以衝壓在端子凸出面中心為宜,如圖 4-1.23。


- ↔ 圖 4-1.22 壓接端子連接要點
- ↔ 圖 4-1.23 壓接端子壓接要點

5 電纜之連接

● 結構

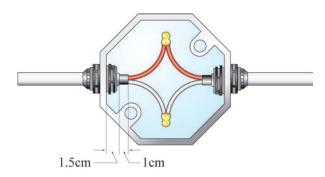
低壓電纜有二心、三心及四心,其心線亦有單心線、絞線之分,其結構如圖 4-1.24 所示。


↔ 圖 4-1.24 低壓電纜之結構圖

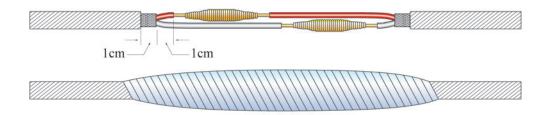
② 低壓電纜之切斷

低壓電纜的線徑因心線的粗細及個數不同而有所差異。線徑小 者用電工鉗直接剪斷;線徑大者則用電纜鉗剪斷。

③ 低壓電纜之剖剝


低壓電纜要連接處理前,必須先加以剖剝,如下圖 4-1.25 所示,剖剝可以使用電工刀或電纜剝皮刀,先切入電纜塑膠外皮後環切一圈,再直切一裂痕至電纜端,再使用尖嘴鉗或電工鉗將其外皮拉除,留下1cm長度再將填塞塑膠絕緣體剝除,最後再將心線絕緣體剝除,剝除時須注意不使刀傷及心線個別之絕緣體。

↔ 圖 4-1.25 低壓電纜之剖剝


④ 低壓電纜之連接

依法規,低壓電纜的連接或分歧,應在接線匣、出線匣或在適當之接線箱內施行之。所以小線徑電纜進入匣或箱內,其外包塑膠保護皮應預留長度約 1.5cm,並以電纜固定頭連接之,在匣及箱內一律按終端連接法處理連接,如圖 4-1.26 所示。

○ 圖 4-1.26 小線徑電纜出線匣內之接線

大線徑的電纜無法在匣或箱連接時,應有適當的絕緣及保護, 且心線的連接點應不在同一處,並在連接處以塑膠絕緣帶或具有同 等效能之絕緣帶,以二分之一膠帶寬度重複纏繞,使其纏繞後之厚 度比原電纜厚度較大,如圖 4-1.27 所示,其填塞塑膠絕緣體及個別 塑膠絕緣體應各露出 1cm,以利接頭之絕緣膠帶纏繞。

↔ 圖 4-1.27 大線徑電纜接線法

技能活動

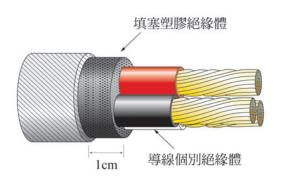
實習項目

- 1. 電纜與導線之剝線。
- 2. 使用線規做導線測量。
- 3. 使用測微計(分厘卡)做導線測量。
- 4. 小線徑電纜出線匣接線。

實習器材

	品 名	規格	單位	數量	備	註
	電工鉗	200mm(8")	支	1		
	尖嘴鉗	150mm(6")	支	1		
	斜口鉗	150mm(6")	支	1		
	電纜剝皮刀	100mm	支	1		
_	剝線鉗	1.0~3.2mm ²	支	1		
工	壓接鉗	1.25~8mm ²	支	1		
具	線規	AWG 或 SWG	只	1		
 	測微計	0~25mm(公制分厘卡)	只	1		
	十字起子	150mm(6")	支	1		
	一字起子	150mm(6")	支	1		
	鋼尺或捲尺	30cm 以上	只	1		
	鐵鎚	1/2kg	支	1		
	出線匣	八角型	只	1		
材	電纜固定夾	NO-3	只	4		
	電纜頭	3/4"	只	2		
料	電纜線	2C×2mm ² ×30cm	條	2		
	閉端壓接套管	2mm ² ×4	只	2		

實習步驟


工作項目1 電纜與導線之剝線

步

黖

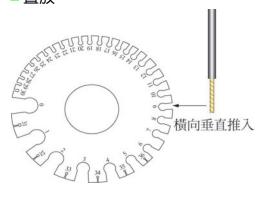
Step 1 計算長度並剪斷

Step 2 剝線

說明

- (1)使用捲尺量取電纜長度 30cm 用電工鉗或電纜鉗剪斷電纜。
- (2)重複(1)之動作剪斷第 二根電纜。
- (1)剥除外皮,將電纜剝 皮刀之刀刃插入電纜 一端 15cm 處,深度 為欲剝電纜外皮厚度 3/4,並將其輕繞一至 二圈後,向外拉開。
- (2)剝除填塞絕緣,將電 纜剝皮刀之刀刃切入 電纜一端 14cm 處, 將填塞絕緣切割後向 外拉開。
- (3)用剝線鉗將導線個別 絕緣剝除,長度約 10mm。
- (4)剖剝導線時請勿損傷 導線,以免影響精確 度。

使用線規做導線測量 工作項目2


黖 步

Step 1 理首

將工作項目 1 剝好的一 根電纜內個別導線理 直。

由線規的外圍將導線垂 直放入測試缺口,找到 最合適的缺口。

Step 2 置放

Step 3 讀值與記錄

由所擺缺口之位置,讀出線號, 再依線號一線徑對照表(表 4-1.1) 求得線徑, 並記錄之。

項次	線號	線徑
1		

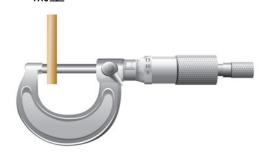
工作項目3 使用測微計(分厘卡)做導線測量

步

Step 1 理直

黖

將工作項目 1 剝好的一 根電纜內個別導線理 直。


Step 2 歸零

左手固定分厘卡,右手 轉動棘輪,使鉆座與心 軸完全密合,聽到三聲 噠噠噠後即完成歸零動 作。

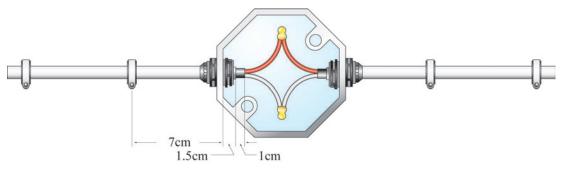
基本電學實習I

Step 3 測量

- (1)將導線放於鉆座與心軸 之間。
- (2)轉動外筒,使心軸剛剛 好與導線接觸,再用右 手輕輕轉動棘輪,使導 線能與心軸及鉆座完全 密合(聽到三聲噠噠馍後 停止)。
- (3)轉動固定環,使心軸固定。

Step 4 讀值

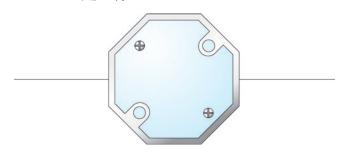
(1)從正面垂直注視圓度盤與 直度盤的刻度,讀出尺寸。


 項次
 直度盤格數
 圓度盤格數
 線

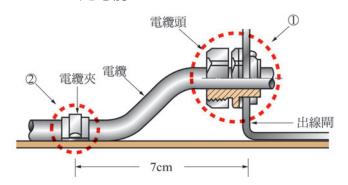
 1

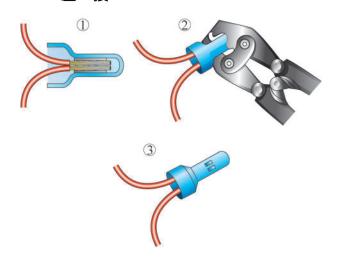
(2)記錄之。

工作項目4 小線徑電纜出線匣接線



○ 圖 4-1.28 小線徑電纜出線匣接線圖


🛂 Step 1 固定出線匣


- (1)使用木螺釘將所有器 具的中心點固定於水 平線的中點。
- (2)修整配線路徑(畫粗一點),並去除非配線路徑的線。

Step 2 固定電纜

Step 3 壓 接

- (1)取工作項目 1 之兩條 電纜線,使用電纜頭 將電纜固定於出線匣 上,電纜外皮須伸入 匣內 1.5cm。
- (2)使用護管鐵或電纜固 定夾將電纜固定於工 作板上。
- (1)依序將兩根相同顏色 導線穿進閉端端子 中。
- (2)以壓接鉗壓接套管。
- (3)用力壓下後,完成壓接。
- (4)再將另外兩根相同顏 色導線完成壓接。

Step 4 整 理

將兩組壓接完之導線整理壓入出線匣內。

問題與討論

- 1. 選用導線所需考慮的事項有哪些?
- 2. 導線壓接接頭有哪些?
- 3. 電纜連接時大線徑及小線徑分別應如何處理?
- 4. 電纜應運用何種工具切斷?

實習二

導線接頭之焊接與絕緣處理

相關知識學習

1 瓦斯噴燈

導線之焊接須用瓦斯噴燈來加熱,如圖 4-2.1, 瓦斯噴燈分成噴燈架及瓦斯罐兩部份,瓦斯採用 罐裝,所以換裝容易。其安裝與拆卸方法如圖 4-2.2 所示:

○ 圖 4-2.1 瓦斯噴燈

(a)安裝

(b)拆卸

噴燈架由噴頭及調整控制把手構成,調整控制把手之調整旋鈕用來控制火焰大小,當順時鐘旋轉時,火焰即變小;逆時鐘旋轉時,火焰即變大。如使用中火焰忽大忽小,則可能是噴頭阻塞或瓦斯罐為新瓶,應將噴頭加以清塞或將瓦斯洩些掉,以使火焰穩定。

2 導線加焊的方法

- 1. 將瓦斯罐裝入噴燈座下方,並使瓦斯出口與噴頭確實接合。
- 2. 將點火槍放於噴頭下方,打開瓦斯調整鈕以點火。
- 3. 調整調整鈕以控制火勢。
- 4. 將導線接續部份待焊處,塗抹上焊劑。
- 5. 將噴燈火燄對準導線接續部份周圍均匀加熱,再加焊錫於接頭上面, 讓焊錫慢慢熔解,滲入接頭內部。

6. 關閉噴燈調整鈕,再將瓦斯罐取下。

3 焊劑及焊料

① 焊 劑

焊劑(flux)的作用是去除被焊金屬表面之氧化物,可以加強金屬的潤濕性,幫助熱傳導及促進焊料附著於接頭,焊劑對焊接品質的影響是相當大。

焊劑可以分為兩大類,一個是松香系(rosin type);一個是水溶系(water soluble)。松香系的焊劑之活性成分為有機酸,因添加了活化劑,對金屬不具腐蝕性,使用後不須清除;而水溶系的焊劑不論有機的或無機的,殘留物都有腐蝕性,必須用清洗劑加以清除。

焊劑有膏狀和液態兩種,我們常用的是膏狀,由15%氯化鋅飽和溶液、35%的橄欖油和50%的牛脂混合而成。

②焊 料

錫焊用的焊料(solder)是由約四比六的鉛與錫所組成的,有膏心 焊線和焊條,前者製成線狀,中空處填入焊膏,而後者製成條狀。 其熔解溫度約為 200℃。

4 絕緣膠帶種類

導線加上焊錫後,為恢復其絕緣特性以絕緣膠帶包紮裸露部份, 以避免發生漏電或感電。絕緣膠帶有下列四種:

① PVC 絕緣膠帶

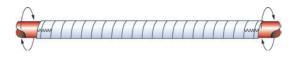
由聚乙稀製成寬 19mm、厚 0.2mm、長 10 公尺的捲式包裝,具高抗酸、高抗鹼功能,為使用最普遍的膠帶。包紮時須以膠帶的半幅寬度重疊,依順時針的方向來回各兩次(共四次)緊密纏繞導線。纏繞的起點與終點須各包含導線絕緣皮 15mm 以上,若屬終端包紮,則須超越裸露部份 15mm 以上。

② 橡皮膠帶

使用含有30%的純橡膠的橡膠混合物製成寬19mm、厚0.8mm、長7.5公尺的捲式包裝,富有黏性,常用於橡皮導線的接續部份。使用時先將橡皮膠帶以半幅寬度重疊,依順時針的方向來回各一次(共二次)緊密纏繞導線。纏繞的起點與終點須各包含導線絕緣皮15mm以上,再以黑布膠帶纏繞兩層。

3 黑皮膠帶

由具有黏性及耐風雨的黑色絕緣劑浸漬棉布製成寬 19mm、厚 0.4mm、長 15 公尺的捲式包裝,常用於風雨線及橡皮導線的接續部份包紮之用。使用方法是用黑皮膠帶以膠帶的半幅寬度重疊,依順時針的方向來回各一次(共二次)緊密纏繞導線即可。


4 油布帶

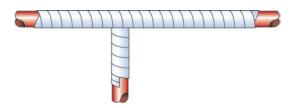
用絕緣漆(凡立水)塗抹於棉布帶的兩面製成寬 19mm、厚 0.5mm、長 10 公尺的捲式包裝,其表面光滑,沒有黏性,無法防濕,但是絕緣性甚高,耐高溫。常使用於電力幹線及電纜接頭包紮之用。

5 各種接頭絕緣處理

① 直路接頭絕緣處理

以膠帶的半幅寬度重疊,依順時針的方向向右緊密纏繞到右側 絕緣皮,來回各兩次緊密纏繞導線。

↔ 圖 4-2.3 直路接頭絕緣處理



② 分路接頭絕緣處理

於分路線側以膠帶的半幅寬度重疊,依順時針的方向向右緊密 纏繞到幹線右側絕緣皮後,折回繞至幹線左側絕緣皮,再折回分路 線,如此重覆一次。

③ 終端接頭絕緣處理

以膠帶的半幅寬度重疊,依順時針的方向向右緊密纏繞超過裸銅線部份半個膠帶寬為止,將超過裸銅線部份反折,再同樣以膠帶的半幅寬度重疊,依順時針的方向向絕緣部份緊密纏繞而回。如此重覆一次即完成。

↔ 圖 4-2.4 分路接頭絕緣處理

↔ 圖 4-2.5 終端接頭絕緣處理

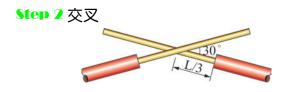
技能活動

實習項目

直路接頭之焊接與絕緣處理。

實習器材

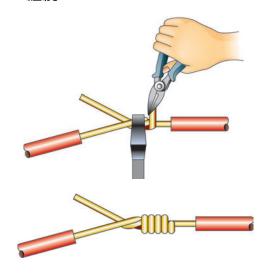
	品 名	規格	單位	數量	備	註
7	噴燈	瓦斯	座	1		
工	錫壺		只	1		
	電工鉗	20mm(8")	支	1		
具	電工刀	100mm(4")	只	1		
共	鋼尺或捲尺	1m以上	只	1		
	單心線	1.6mm、150mm 長	根	2		
材	焊錫條		條	若干		
	焊劑		罐	1		
	抹布		塊	2		
料	PVC 絕緣膠帶	19mm×0.2mm×10m	捲	1		
	瓦斯罐		罐	1		


實習步驟

工作項目1 直路接頭之焊接與絕緣處理

說 明

取兩根導線150mm長, 約剖剝104mm長的絕緣 皮,理直並用電工刀刮 去氧化物。


在距離絕緣端約 L/3 (35mm)處以 30 度角相交叉。

Step 3 互絞


用布包電工鉗夾在導線 交叉點,並以右手的食 指及姆指將兩導線互絞 一回。

Step 4 纏繞

使用尖嘴鉗夾住左方導線,以垂直方向緊密纏繞右方導線5次,再將 繞剩的多餘導線剪掉, 並用尖嘴鉗壓平。

Step 5 完成連接

重覆 Step 3 及 Step 4

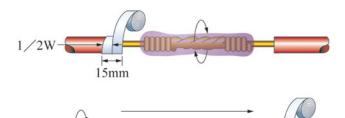
以相同的方法完成另一 邊的接線。

Step 6 準備焊接

用濕抹布將絕緣包妥。 並在接續部份塗抹焊 劑。

基本電學實習I

Step 7 加焊錫


將噴燈火燄對準導線接續部份周圍均勻加熱, 再加焊錫於接頭上面, 讓焊錫慢慢熔解,滲入 接頭內部。

Step 8 擦拭


- (1)關掉噴燈,取濕抹布 擦拭表面,使其美 觀。
- (2)冷卻後去除包在絕緣 部份的濕抹布。

Step 9 纏繞膠帶

於左邊絕緣皮 15mm 處開始,以膠帶的半幅寬度重疊,依順時針的方向向右緊密纏繞到右側絕緣皮 15mm 處。

15mm

如 **Step 9** 來回各兩次 (共四次)緊密纏繞導線。

問題與討論

- 1. 導線加焊的方法為何?
- 2. 導線接頭加焊的種類?
- 3. 導線絕緣處理之目的為何?
- 4. 導線接頭的絕緣處理有哪幾種?

第4章學習摘要

實習一 1. 導線分類

- (1)依使用材料分銅線、鋁線、鋼心鋁線、鎳烙線及銅合金線等。
- (2)依構造分裸銅線、單心線、絞線、電纜線、花線等。
- 2. 導線選用的考慮事項為:電壓降、耐電壓、電力損失、安全電 流、機械強度、導線線徑、導電率、彎曲性、耐用性及重量價錢。
- 3. 導線測量
 - (1)線規:可分中國線規(CWG)、美國線規(AWG)、英國線規 (SWG) •
 - (2)測微計(分厘卡):
 - ①公制分厘卡:可測範圍 0~25mm, 直度盤每格 0.5mm, 圓 度盤每格 0.01mm。
 - ②英制分厘卡:可測範圍 0~1",直度盤每格 0.025",圓度盤 每格 0.001"。
 - ③游標卡尺:是機械工件最常使用的測量儀器。
 - ①1/50mm 精度:本尺1格為1mm,游標尺計50格,每格為 49/50mm •
 - ② 1/20mm 精度:本尺 1 格為 1mm,游標尺計 20 格, 每格為 19/20mm

4. 壓接接頭種類

- (1)螺式接頭:由電木製成,內有螺紋。適用於較細的導線。
- (2)彈簧螺式接頭:是一種內附彈簧的螺式接頭。適用於單心及 較 制心之 雷線。
- ③ 閉端端子:由銅鍍鋅外套尼龍製成。將導線互絞插入套管用 壓接鉗壓接即可。
- (4)銅壓接套管:由銅管製成。將導線之絕緣剖剝後穿入套管用

基本電學實習Ⅰ

壓接鉗壓接即完成。

- (5)壓接端子:有O型及Y型兩種。
 - ①壓接端子的規格分別為導線線徑、螺絲直徑及端子型式。
 - ②壓接端子需使用壓接鉗壓接。
 - ③壓接端子與導線連接需符合規定。
 - ④壓接端子以不彎曲為原則,若需彎曲則其彎曲角度不得大 於60度。
 - ⑤一個端子上只能連接兩條導線,若有壓接端子則應以背對 背的方式來固定。
 - ⑥壓接端子壓接時應以衝壓在端子凸出面中心為官。

5. 電纜之連接

- (1)低壓電纜有二心、三心及四心,其心線亦有單心線、絞線之分。
- (2)低壓電纜之切斷:線徑小者用電工鉗直接剪斷;線徑大者則 用電纜鉗剪斷。
- (3)低壓電纜之剖剝:使用電工刀或電纜剝皮刀先加以剖剝,剝 除時須注意不得傷及心線。
- (4)低壓電纜之連接:小線徑,電纜伸入匣內 1.5cm 以電纜頭固定,並按終端連接法處理連接。大線徑,心線的連接點不在同一處,並以絕緣帶重複纏繞包覆。

實習二 6. 瓦斯噴燈

- (1)瓦斯噴燈分成噴燈架及瓦斯罐兩部份,噴燈架由噴頭及調整 控制把手構成,用來控制火勢的大小。
- (2)調整旋鈕順時鐘旋轉時,火焰變小;逆時鐘旋轉,火焰變大; 火焰忽大忽小,可能是噴頭阻塞或瓦斯罐為新瓶。
- 7. 導線加焊的方法:瓦斯罐裝罐➡點火➡調整火勢➡塗抹焊劑➡ 加熱焊錫於接頭上面➡關閉噴燈,取下瓦斯罐。
- 8. 焊劑及焊料
 - (1) 焊劑的作用是去除金屬表面之氧化物,促進焊料附著於接頭。

第

- (2)可以分為松香系及水溶系兩大類,有膏狀和液態兩種。
- (3) 焊料有膏心焊線和焊條兩種,其成分是由鉛與錫所組成的合金。
- 9. 絕緣膠帶有下列四種 PVC 絕緣膠帶、橡皮膠帶、黑皮膠帶及油布帶。
- 10. 各種接頭絕緣處理

直路接頭絕緣處理、分路接頭絕緣處理及終端接頭絕緣處理。

端子。

是非題

足外因			
實習一	()	1. 導線線徑愈小,集膚效應愈大。
	()	2. 絞線通常以 mm 來表示它的線徑大小。
	()	3. 線徑愈粗之導線,其耐電流愈小。
	()	4. 導線安培容量是以被覆導線之絕緣物的容許溫度而定。
	()	5. 導線穿於同一導線管內,如導線數愈多,其載流量愈小。
	()	6. 電爐用的電熱絲係採用單心線。
	()	7. 具有多層保護的導線是電纜線。
	()	8. 一般製作導線的材料為銀。
	()	9. 英制分厘卡之圓度盤,每一小格為 0.01"。
	()	10. 使用線規測量線徑的方法是將導線由線規的上方穿入適
			合的孔洞,再依孔洞線號查出線徑。
	()	11. 導線接頭在壓接後,應加焊以強化機械強度。
	()	12. 壓接端子是用來做為導線接續壓接用。
	()	$13.$ 壓接端子 1.25 -4Y的意義為:所壓接導線線徑為 1.25 mm 2 、
			而螺絲直徑為 4mm 的開口型端子。
	()	14. 使用螺式接頭前應先將導線互絞成螺旋狀。
	()	15. 壓接鉗除了可做為導線壓接外,也可以用來剪線。
	()	16. 銅導線連接時,以使用銅壓接套管最好。
	()	17. 導線之連接若採用壓接方法,則連接前可免作清淨導線
			表面之處理。
	()	18. 左圖導線所使用的端子為 Y 型壓接

	() 19. 開口型(Y型)的壓接端子較易固定,故可用於線徑大的電
		線。
	() 20. 永久性且不須拆卸之電路,宜採用 O 型壓接端子。
	() 21. 控制電路中,若需使用壓接端子,得以電工鉗之虎口部
		份施工。
	() 22. 連接兩電纜的各心線時,連接點不應集中於同一斷面處。
	() 23. 當剝導線之絕緣被覆時,對導體可剝傷,但不能太嚴重。
	() 24. 大線徑之電纜互相連接時,若適當之絕緣及保護,可不
		在接線匣連接之。
	() 25. 電纜互相間之連接應在接線匣或出線匣或在適當之接線
		箱內施行。
實習一	() 26. 導線接頭加焊的目的是為了美觀。
	() 27. 導線接頭做加焊錫處理時,通常使用焊膏來防止氧化。
	() 28. 瓦斯噴燈不使用時應將瓦斯罐與噴燈架分離,以避免瓦
		斯漏氣。
	() 29. 電路線接頭處常加焊錫其主要目的在降低接觸電阻。
	() 30. 導線接頭使用膠帶包紮,是為了恢復絕緣特性。
	() 31. 油布帶是用絕緣漆塗抹於棉布帶的兩面而成。
	() 32. 使用 PVC 膠帶包紮接頭,須依順時針方向來回包紮一次。
	() 33. 由具有黏性及耐風雨的黑色絕緣劑浸漬棉布製成的膠帶
		是 PVC 膠帶。
	() 34. 導線連接時,如發現其表面不乾淨時,應先連接後再磨光。
選擇題		
實習一	() 1. 鋁的導電率約為銅的 (A)31 % (B)51 % (C)61 %
		(D)81 % ·
	() 2. 電熱類器具的電熱絲是使用 (A)花線 (B)單心線
		(C)絞線 (D)鎳烙線。

) 3. 美國線規中,線號依上升方向,每差6號,直徑就大約為 原來的 (A)一倍 (B)一半 (C)兩倍 (D)四分之一。) 4. 常用低壓屋內配線以採用下列何種導線為宜? (A)軟 (抽銅線 (B)硬抽銅線 (C)鋼心鋁線 (D)鐵線。 () 5. 一般測量導線線徑之分厘卡應選用規格為 (A)75~100 (B)50~100 (C)25~50 (D)0~25 公庫。 () 6. 線規可直接量測導線之 (A)線徑 (B)截面積 (C)長度 (D)根數。 () 7. 中國線規簡稱 (A)C.W.G (B)A.W.G (C)B.W.G (D)S.W.G • () 8. 下列哪一種金屬的導電率最高? (A)金 (B)銀 (C)銅 (D)鋁。 () 9. 導線本身所能容許的最大電流稱之為 (A)短路電流 (B)渦載電流 (C)安全電流 (D)負載電流。 () 10. 公制分厘卡的圓度盤每一小格等於 (A)0.5 (B)0.25 (C)0.01 (D)0.025 mm • () 11. 花線適用於 (A)250V (B)300V (C)500V (D)600V 以 下雷路。 () 12. 在做導線連接,下列哪一種接頭不需要用壓接鉗壓接? (A)螺式接頭 (B)閉端端子 (C)銅壓接套管 (D)壓接端子。) 13. 端子壓接後導線絕緣皮應距端子 (A)2 (B)1 (C)0.5~2 ((D) $0.5 \sim 1$ mm •) 14. 一般導線之連接以 (A)夾接 (B)捲接 (C)焊接 (D)壓 (接 法較佳。) 15. 銅壓接套管為防止表面氧化,在其表面均塗上一層 ((A)銀 (B)銅 (C)錫 (D)鋅。 () *16.* 絞線接於開關時,在線頭加焊錫或使用壓接端子可以 (A)減少接觸電阻 (B)減少溫升 (C)降低電壓降 (D)以

上皆可。

	() 17	:一個端子上最多只能連接多少條導線? (A)一條 (B)二
			條 (C)三條 (D)視需要而定。
	() 18	. 壓接端子以不彎曲為原則。若須彎曲,則其彎曲角度不
			得大於 (A)30 (B)45 (C)60 (D)90 度。
	() 19	. 壓接端子規格 1.25-4Y 中的 1.25 代表 (A)導線線徑
			(B)螺絲孔徑 (C)螺絲的長度 (D)導線的種類。
	() 20	. 導線連接壓接時,宜慎選適合 (A)剝線鉗 (B)尖嘴鉗
			(C)斜口鉗 (D)壓接鉗 以符合各導線線徑規格。
	() 21	. 小線徑電纜以電纜頭固定,進入匣或箱內應預留長度約
			(A)0.5cm (B)1cm (C)1.5cm (D)2cm 外包塑膠保護皮。
	() 22	. 小線徑電纜進入匣或箱內連接,應按 (A)終端連接法
			(B)直路連接 (C)分歧連接法 (D)異徑連接法 處理連接。
實習一	() 23	2. 導線接頭加上焊錫後可以 (A)減少氣隙 (B)降低接觸
			電阻 (C)增加機械強度 (D)以上皆是。
	() 24	. 下列導線連接法何者較適合使用錫壺加焊? (A)單心線
			直路單捲法 (B)單心線分路單捲法 (C)單心線直路終端
			法 (D)絞線直路單捲法。
	() 25	. 錫焊常用的焊料,其成分是由 (A)鉛與銀 (B)鉛與錫
	,		(C)銀與錫 (D)鉛與金 所組成。
	() 26	法接頭焊錫最適當鉛錫比例約為 (A)一比九 (B)二比八
	,	`	(C)三比七 (D)四比六。
	() 27	'. 適合接頭焊接的焊錫最適當的熔解溫度約為 (A)150℃
	(\ or	(B)200°C (C)250°C (D)300°C •
	() 28	. 膠帶在包紮時,一般都須以重覆 (A)1/2 (B)1/3 (C)1/4
	() 90	(D)1/5 膠帶寬度及順時針方向向前纏繞。
	() 29	. 膠帶在包紮時,須包含絕緣部份 (A)10 (B)15 (C)20 (D)25 mm 以上。
	() 30	
	(טט נ	! PVC膠帶的厚度為 (A)0.1 (B)0.2 (C)0.4 (D)0.8 mm。

基本電學實習I

- () 31. 屋內配線中,最常使用的絕緣膠帶為 (A)PVC 膠帶 (B)橡皮膠帶 (C)黑皮膠帶 (D)油布帶。
- () 32. 由聚乙烯製成,具高抗酸、高抗鹼功能的絕緣膠帶為 (A)PVC 膠帶 (B)橡皮膠帶 (C)黑皮膠帶 (D)油布帶。